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SUMMARY 
In general the k--E turbulence model is used for stationary turbulent mean flow. First we review some of the 
hypotheses for the derivation of the model. Then we study it from the point of view of the numerical analyst 
(positivity of k and E,  boundedness, etc.). Finally we analyse an extension called MPP, specially derived for 
transient mean flow. The rest of the paper is devoted to a robust (stable) numerical implementation of these 
models and several tests for the flow behind a cylinder. 
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1. INTRODUCTION 

The Navier-Stokes equations describe accurately the motion of Newtonian incompressible fluids: 

U, + UVU + Vp - VAU =f, v.u=o. (1) 

With appropriate boundary conditions, (1) defines the velocity field u and the pressure field p 
uniquely;'*2 f i s  the density of external volumic forces acting on the flow. 

To solve the Navier-Stokes equations numerically with the finite element method, (1) must be 
written in variational form. For instance, with Dirichlet boundary conditions the initial boundary 
value problem in variational form is 

where 

J(R) = {u E H'(R). : v - u = O}, Jo(R) = {u E J(R) : ulr = O}. (4) 

R denotes the computational domain, its boundary, (a, b) is the integral of a(x).b(x) on !2 and 
H'(R)" is the Sobolev space of vector-valued functions on R" with square-integrable derivatives. 
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We shall denote by JOh the Set of functions of J h  which are zero on the boundary rh of the 
computational domain, and similarly 

VOh = {oh E Vh : uh Irk =o}. (8) 
Here h is a parameter such that Jh+J as h tends to zero; in the finite element context it is the size 
of the elements. o n e  possible choice for Vh, Qh isJs4 the so-called mini-element,5 where Qh is the 
space of continuous piecewise linear functions on a triangulation (tetrahedrization in 3D) of R 
and where V,, is the space of continuous.vector-valued functions also piecewise linear but on the 
triangulation deduced from Th by dividing each element in three (four in 3D) from its centre of 
gravity. 

Before time discretization, (9, (7) is a set of non-linear ODES for which one can prove the 
following error estimated 

From the Prandtl equations one can estimate IIuVu(Io in the boundary layers; similarly, if 
Kolmogorov's 5/3 law holds, one also reaches an estimate for 11 uVu 1l0. In both cases one finds 
that it is of order v-'I4 when the equations are scaled so that u and R are of order unity (i.e. v - l  is 
the Reynolds number). 

Therefore (9) tells us that a reasonable precision will be achieved only if h 4 v5/*. However, for 
practical applications the Reynolds number is usually larger than lo6, so at least loo0 points in 
each spatial direction are required. Since one cannot afford such fine grids, turbulence modelling 
must be introduced. 

2. TURBULENCE MODELLING 

2.1. Reynolds' hypothesis 

Navier-Stokes equations with random initial data: 
One approach to turbulence modelling is to consider the initial value problem for the 

where w(xo,  .) is random with known statistics. Let ( ) denote the averaging operator (expected 
values). To compute ( u )  one replaces u by u+u' in (10) (the mean of u is also denoted by u): 

~ , t  + UVU + V p  - VAU + V U' @ U' = - ( t i t  + u'VU + UVU' + Vp' - vAu'), (12) 

(13) v - u' + v - u = 0, 
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because u‘VU’ = V (u’ 8 u’) when V * u‘ = 0. Now the averaging .operator is applied to (12) and the 
Reynolds equations are found: 

(14) 

(15) 

u,* + UVU +Vp - VAU + V  * ( U’ @ d )  = O ,  v.u=o. 
The quantity 

is called the Reynolds tensor. 
It is reasonable (Reynolds’ hypothesis) to relate R to Vu + VuT because turbulence occurs in 

places where Vu is large (with a few exceptions such as boundary layers before transition and 
turbulence in decay). It was shown in Reference 7 that with Reynolds’ hypothesis the only possible 
form for R compatible with reference frame invariance of (14) is 

R = ( U’ @ U’ ) 

R = al + b(Vu + VuT) in 2D, (16) 

(17) R = aZ + b(Vu + VuT) + c(Vu + Vu’)’ in 3D, 

where a, b and c are functions of the invariants of Vu + VuT only. Since V - u = 0, there are only two 
such invariants in 3D, )Vu+VuTTJ and det(Vu +VuT), and only one in 2D, JVu+VuTJ. 

Now R appears only through V - R  in (14) and V*(aI) is a pressure term Va so (16) is 
functionally equivalent in 2D to (b is now denoted by vT) 

v * R = v ’ [VT(vU + vUT)], (18) 

where vT is any function of I Vu + VuT I .  
In Smagorinsky’s model8 vT is chosen proportional to IVu + Vu’ I: 

R = - ch2 (VU + VU~I(VU + VuT), c = 0.01. (19) 
The fact that vT is a function of h is based on an ergotic hypothesis which replaces the expected 
value by a space averaging; if this is allowed then w in (1 1) tends to zero with h since it represents 
the part of the flow which is not computable because it falls under the grid (subgrid-scale 
modelling; see e.g. Reference 9). The power ‘two’ in hZ in (19) is found from a dimensionality 
argument. 

Deardorff,” Moin and Kim,” Horiuti” and SchumannI3 were able to reproduce turbulent 
channel flows quite accurately with this model. However, for flows around obstacles we have been 
less successful; it seems that the model is adequate only if there are already a sufficient number of 
grid points to represent the beginning of the Kolmogorov range of the flow. Notice also that (19) 
is unlikely in 3D since the general form (17) must be considered in principle. A similar suggestion 
can be found in References 14 and 15. 

2.2. The k--E model 

A more elaborate model was proposed by Launder and Spalding16 and Rodi”: the so-called 

Set k as the turbulent kinetic energy and E as the turbulent rate of dissipated energy, so 
k-& model. 

k =+ ( I  I’ ), (20) 

(21) 
V 

&=- ((Vu’+Vu’T(Z), 2 
k2 

R=* kl -c,, - (VU+ VuT), 
E 
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c, k2 k2 
k,* + uVk -- - I Vu + VuTI2 - V - ( c, Vk ) + E = 0, 2 E  

with c,=0-09, c1 =0.1296, c2 = 1.92 and c,=0*07. 
Natural boundary conditions could be 

k, E given at t = 0, k Ir = kr, E Ir = +. 
However, an attempt can be made to remove the low-Reynolds-number regions from the 
computational domain by considering ‘wall conditions’ 

klr = u*’c; ’”, E~~=u*~/KB, (26) 
u * n = O ,  au .T + p au - ? / a n  = 7, (27) 

where K is the Von Karman constant (K = 0.41), 6 is the boundary layer thickness, u* (computed 
by (28)) is the friction velocity, 8 = c, k2/E, a = p/{ K ~ [ B  + K- log(b/D)] } (where D is a roughness 
constant), y = - u* )u* I and B is such that (27) matches with the viscous sublayer. To compute u*, 
Reichard’s law may be used: 

with y +  = 6u*/v. Thus in reality a, and y in (27) are non-linear functions of u - 5. For smooth walls 
it is suggested to take a=y=O. 

For physical and mathematical reasons it is essential that the system (20)-(24) yields positive 
values for k and E. At least in some cases it is possible to argue that if the system has a smooth 
solution for given positive initial data and zero Dirichlet conditions on the boundaries, then k and 
E stay positive at later times. For this purpose one looks at 

8 = k/E. 

If D, denotes the total derivative operator, a/at + uV and E denotes )IVu+ V U ’ ~ ~ ,  then 

c k2 k kZ 
E E  E2 E 

=B2E(c,, - C I ) + ~  V 0 -  Vk -c, - V .- VE- 1 +c, 

k k2 
E2 E 

k2 
= e2E(C,  - c l )  - 1 + c2 + C,V a- ve + 2c,e2ve - v + (c, - c,) - v -- VE. 

E 

In this equation it is seen that because c,<cl and c2 > 1 , O  will stay positive and bounded when 
there are no diffusion terms. Indeed, the equation then reduces to 

DtO=82E(c,-cl)- 1 +c2, 

whose solution is always bounded when E is constant. 

moment the minimum of 0 is zero at (x, t )  we will have 
Also, 6 cannot become negative even in the presence of viscous terms if c, = c,, because the 

ve = 0, O = o ;  
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so at this point we get 

e,, - cz + 1 = 0, 

which is impossible because 0 cannot become negative unless 8, , 6 0. 
In Reference 18 a q-fformulation is described, where q = k'" andfis the frequency of the large- 

scale motions, whose numerical performance is appreciably better than the first one. In a similar 
fashion, in Reference 19 a k-8 model with 8 = k/-E is presented and numerical results are compared 
with the results obtained with the k--E model. 

2.3. A k--E model with memory 

In Reference 20 an attempt was made to prove Reynolds' hypothesis (18) by assuming that the 
turbulent part of the flow has a length scale 1 much smaller than the length scale L of the mean 
flow. With q=l/L it was shown (see also Reference 21) that the solution u' of the problem 

+(u" * V)U" + Vp" - ~ $ A u "  = 0, V.u'=O in n x ] O , T [ ,  

u y x ,  0) = U y x )  + q"3 WO(X/V,  x) 

converges to the solution of (n = 2 in 2D, n = 3 in 3D) 

v - u = o ,  

where a is the inverse Lagrangian co-ordinate, i.e. the solution of 

a*, + u v a  = 0, 

i=C a f j ,  

a(x,  0) = x, = x - ut 

(where ri, is the inflow boundary), Po = 1/3 and 

t(x)=min{t, t -s :a (x ,  s)Er, ~20). 
I ,  i 

This model is referred to below as the MPP model. 
In (30) the stress tensor is not viscous in the sense that it conserves energy when p = O  

jQ ($12 + qO(a(x, t)e280'(n+1)-zBo/(1+i))dx=constant. 

To account for dissipation one must pursue further the asymptotic expansion that led to (30); 
then a term proportional to ql/'(Vu + VuT) is found and the model becomes 

jo4 VaVaT-Voq'~2(VU+VuT) =o, ) u,, + (u * V)u + v p  + v - 
((1 +i)2 

(35) 

where 

(36) q =  qO(a(x, t))e-"YO'(")ez80/(n+l)-z80/(l + I )  

with yo = 1/9. However, it was found in Reference 19 that this is too crude a model for the viscous 
effect of the turbulence. Since the k--E model is quite good at simulating the effect of dissipation, we 
also built a mixed model where the kinetic turbulent energy is the product of that coming from 
the MPP model and that coming from the k--E model; and similarly, the rate of dissipated 
turbulent energy is the product of the kinetic energy of the MPP model and E found in the k--E 
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model. The Reynolds tensor is the sum of the tensors of both models: 

i=Ca5j,  
1.j 

a,, + uva  = 0, a(x, O)=x. 

Notice that by changing the value of the constants we can pass continuously from the k--E model 
to the MPP model. 

3. DISCRETIZATION BY FEM AND CHARACTERISTICS 

Total derivative discretization was introduced simultaneously by Ukeguchi et 
Russell,23 Benqui et al.24 and P i r o n n e a ~ . ~ ~  

If x;(x) denotes an approximation to x(n&), the solution at I= ndt of 

Douglas and 

dxldI=u(x(I), I ) ,  x ( ( n +  l)dt)=x, (42) 

then (9, (7) is discretized in time by 

With turbulence modelling, v andfmay be functions of x, Vu", k", E", etc. 
Because of the constraints on the divergence of uh in JOh, (43) is a linear system of the type 

Au + BP = F, BTV=O, (44) 
where P represents the Lagrange multipliers of the constraints (but also an approximation of the 
pressure at the vertices). V can be formally eliminated 

B'A - ' B P  = B'A - ' F ,  (45) 
but this system being symmetric positive semidefinite, it can be solved by a preconditioned 
conjugate gradient algorithm as explained in References 26 and 27; the only difference is that here 
A is a function of t = ndt through vT. 

In principle, the same time discretization scheme can be applied to the remaining equations of 
the turbulent model. 

In the case of the Lagrangian co-ordinate a(x, t)  we found that it is better to integrate V a  
directly and use the identity det Va= 1 to reduce the number of equations: 

(a;+', Uh)=(a;'X;, u h ) ,  Y U L E  Vh, (46) 

( a ~ , ~ ' , ~ h ) = ( a ~ , j ' ~ ~ , o h ) - C d t ( u , i a ~ , i ) ,  ] = 1 , .  . . ,n. (47) 
i 
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For the k-e equations the algorithm is extremely sensitive to the discretization scheme because of 
the negative sign in the production terms. After several months of effort to find a stable scheme for 
transient flows, we arrived at the following. 

As in Reference 28, the equation for k is discretized by 

v w h  E Qoh = { w h  E Qh : w h i r  =o}, k h  - k r h  E Qoh. (49) 

The equation for E is treated in two steps via a convection of 8 = k/E. Without diffusion, 8 satisfies 

(50) 
e 2  e,t + uve + c, - 1 v u  + v U T 1 2  = c2 - I. 2 

Thus a convection step on 8 that does not include the viscous terms is 

where @=&I&;. Then ~ i + ~ ~ ~  is found as 

and a diffusion step can be applied to find E ; + ~ :  

(54) &n+ 1 
vWhE QOh, h - E r h E Q o h .  

Notice that this scheme is not likely to produce negative values for 4" and G+ because c1 > c, 
and c2> 1. 

To improve the stability it is possible to replace (48) by 

V W ,  E Qoh= { W h E  Qh: wh(r=o), 

Note also that (52) should be implemented weakly, e.g. 

(&;+"', w h ) = ( & +  "2/@+1'2, w h )  V w h E Q h .  

This procedure may induce negative ~ i + ~ / ~  if &+'/2/G+1/2 is too irregular. 

4. BOUNDARY CONDITIONS 

The boundary conditions for kh and &h are standard Dirichlet conditions but the boundary 
conditions for u h  (see (30)) are non-linear Robin-type for uh. T and Dirichlet-type for l (h .  n. Since 
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each time step of the algorithm requires the solution of a generalized Stokes problem (see (42)), we 
can discuss the implementation of these conditions on the Stokes problem only: 

0. 0 0 0  Q. 0. 1 . I  

Figure 1. __ Initial, . . . . . . . k-c, ----- mixed model. 
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where nh(Xj) is an approximation of n at the nodes {xj} of the triangulation for uh. Although this 
works well (some of the results at the end have been obtained with this method), it is not easy to 
choose nh in a way that differentiates between real corners or edges of 0 and corners or edges ofoh 
which are due to the piecewise linear approximation of r by rh. 

A nice trick, although less precise, is to notice that if u, q are in H', 

(u,Vq)=O, tlq o V . u = O  in R and u - n = O  on r, (61) 

I I 

Figure 2. Figure 3. 

Figure 4. Figure ,5.  
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jn u v q  = -In q v - u  + jr u - n q .  

Thus another discretization for ( 5 9 ,  (56) is 

Jbnh={OhE Vh:f'L, vqh)=o ,  V q h E Q h } .  (63) 
Pares29 showed that the solution of (57), (61) converges to the solution of ( 5 9 ,  (56) with an H'- 
error O(Jh);  thus although (63) is much easier to implement, one loses some precision. 

For the outflow boundary rout several options were tested: Neumann conditions for (53), 

au - vTVu * n + pn =O; 

vT(Vu + VuT)  * n -pn = O; 

(64) 
no stress, 

(65) 
no tangential stress, 

free convection, 

condition on the pressure, 

u n = um - n, au -7 - vT( &/an)? = 0; (66) 

P = P m ,  u A n = r ,  

Figure 6. 
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where r = 0 or r = u"0 x". This last condition is implemented by replacing (43) by (69) 

see References 4 and 30-32 for further details. 

5. NUMERICAL RESULTS 

5.1. Plane Poiseuille $ow with the k--E model 

The domain is rectangular and 2D. The inflow conditions on Uh, kh and &h are taken from the 
experiment of C~mte -Be l lo t ;~~  Neumann conditions are given at the outflow. The k--E logarithmic 
wall laws are used on the horizontal walls, with Re=57000. Figure 1 displays k, E and ui and 
shows good agreement with other similar  computation^^^ and with the mixed MPP/k-6 model. 
Notice that in this case of stationary mean flow there are not many differences between the k-E 
model and the mixed model; the memory term R(Va) vanishes. 
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5.2. Flow in a cauity with the k-.s model 

Similar conditions to those of Section 5.1 are imposed on the inflow and outflow boundaries 
and on the walls, with Re= 100000. The computed flow is stationary and the figures display k 
(Figure 2), E (Figure 3), vT (Figure 4) and u (Figure 5). 

0 
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5.3. Flow behind a cylinder without turbulence model 

A direct simulation of the Navier-Stokes equations with Re=200 is made. The figures show 
V A u (Figure 6) at different instants and the drag-lift (Figure 7) and moment on the cylinder as a 
function of time. 

5.4. Flow behind a cylinder with the k--E model at Re=500 

Starting from the results of Section 5.3, the k--E model is activated into the Navier-Stokes 
equation with k = E =  at inflow and outflow boundaries. The figures show V A u (Figure 8) 
and k (Figure 9) at t = 30 s. Reichard‘s wall law has been used. Simulation at Re = loo00 with a 
k-k/-E model have also been carried out.35 

5.5. Flow behind a cylinder with the M P P  model at Re=200 

A similar computation is made with the MPP model with q(r=0*1 and 10 on two triangles near 
the region where the boundary layer separates and q1r =O elsewhere. The discretization for q uses 
a particle method, more appropriate to this type of boundary conditions. The results show, for 
qIr=0.1, q (Figure 10) and the drag-lift (Figure 1 l), and for qIr= 10, Vq (Figure 12) at t = 30 s and 
the drag-lift and moment on the cylinder (Figure 13). 

5.6. Flow behind a cylinder with the mixed MPPIk--E model 

in Section 5.4 elsewhere. 
This is the same as in Section 5.4 but with ko =0, q(r=0*1 at the separation points and kr,  Ey as 

Figure 15. 
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Figure 16. 

5.7. Flow behind a sphere 

To evaluate the influence of the outflow condition, simulations with (62), (63), (64) or (65) were 
made at Re = 1000 with the Navier-Stokes equation without turbulence modelling. A direct 
simulation at Re = 100 was made with the no-slip boundary condition imposed weakly 
(Figure 15) and a computation with the Smagorinsky eddy viscosity was also made together 
with the wall laws (Figure 16). With the grid used the flow is steady. 

6. DISCUSSION AND CONCLUSIONS 

One major criticism Speziale' made of the k--E model is its inability to predict secondary eddies 
in 3D in certain configurations. This may be due to the missing term (c = 0 in (16)). However, in 
2D the model is both consistent with Reynolds' hypothesis and frame-independent as shown at 
the beginning. The main conclusion of this study and our numerical tests is that the model does 
not always yield stationary solutions. 

Several researchers known to the authors have attempted a simulation of the flow behind a 
cylinder with the k--E model without success, the main difficulty being that classical algorithms 
(explicit or Newton steps) fail to converge or that they generate negative values fork or E. We have 
shown in this paper that by carefully studying the positivity of the variables it is possible to 
construct semi-implicit, second-order in time, ,!,'-stable algorithms. Our algorithm is sufficiently 
robust to yield a solution to the difficult problem of simulating the flow behind a cylinder with the 
k--E model; it also produces the known answers on problems such as pipe flow or cavity flow. 
However, our study raises a major question: is the solution stationary or transient? 
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From a theoretical point of view it is almost certain that both solutions exist, as for the 
Navier-Stokes equations without turbulence modelling. So the real question is the stability of the 
stationary solution. Suppose that by other methods one is able to compute a stationary solution 
of the model; if the solution is unstable then any small perturbation will induce a bifurcation 
towards the transient solution. Then, is there any value in a turbulence model that produces 
unstable solutions? The authors believe that the answer is no and that the transient solution is 
more interesting physically. 

Quite a number of authors derive the k-c model by taking time averages of the fluctuating 
quantities. Of course the mean flow cannot be transient then unless there are two time scales in 
the flow and the averaging process applies to the small time scale. But since it is equally easy to 
derive the k--E model by taking ensemble averages over fluctuating initial data, one can construct 
a time-dependent model also. 

As pointed out by Rodi (private communication), the very fact that one computes a 2D solution 
of a flow which has 3D fluctuations implies an ensemble or space-averaging process. 

The next question is the connection between the k--E model and a Eulerian-Lagrangian model 
(MPP) which is similar except for a term which involves the Lagrangian co-ordinate of the flow. 
This model was derived with some mathematical rigour in Reference 20 for flows which have two 
well-separated scales (such as the flow right behind the cylinder). The model is difficult to 
implement because it is numerically unstable without dissipation terms and too dissipative 
otherwise. But in this paper we have recalled that both models are in fact complementary and that 
one can build a k--E model with memory by mixing the two. However, our numerical simulations 
show that the viscous effects dominate the memory effect and that the results produced are not 
very different for the type of mesh used here. 

Much still remains to be done before drawing hard conclusions. We would have liked to try 
several meshes and several time-stepping procedures to check the independence of the solutions 
on these, but our computing means (20 h of CRAY 2) did not allow us to proceed further for the 
time being. Comparison of the two models and analysis of the results are difficult for us numerical 
analysts. 

The point is that our task is not to discuss the validity of the model from the point of view of 
fluid mechanics but to show to the physicist what the consequences of his model are. The present 
study, for instance, shows that it is not reasonable to expect a stationary solution to the k--E model 
because the viscosity created by the model is not sufficient to stabilize the stationary flow. 
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